首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27269篇
  免费   4044篇
  国内免费   1855篇
电工技术   16045篇
综合类   1711篇
化学工业   2027篇
金属工艺   613篇
机械仪表   1033篇
建筑科学   490篇
矿业工程   515篇
能源动力   1310篇
轻工业   283篇
水利工程   391篇
石油天然气   650篇
武器工业   91篇
无线电   4277篇
一般工业技术   1303篇
冶金工业   640篇
原子能技术   417篇
自动化技术   1372篇
  2024年   55篇
  2023年   389篇
  2022年   677篇
  2021年   853篇
  2020年   959篇
  2019年   769篇
  2018年   779篇
  2017年   1133篇
  2016年   1179篇
  2015年   1431篇
  2014年   1950篇
  2013年   1774篇
  2012年   2355篇
  2011年   2493篇
  2010年   1726篇
  2009年   1859篇
  2008年   1790篇
  2007年   2015篇
  2006年   1826篇
  2005年   1366篇
  2004年   1067篇
  2003年   911篇
  2002年   729篇
  2001年   684篇
  2000年   519篇
  1999年   387篇
  1998年   273篇
  1997年   205篇
  1996年   198篇
  1995年   157篇
  1994年   154篇
  1993年   125篇
  1992年   90篇
  1991年   60篇
  1990年   60篇
  1989年   44篇
  1988年   35篇
  1987年   22篇
  1986年   15篇
  1985年   12篇
  1984年   16篇
  1983年   8篇
  1982年   4篇
  1981年   5篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1959年   5篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
分级加载电压技术能够有效延长电渗处理的时间,改善地基的处理效果并能有效降低能耗。在利用分级加载电压技术开展电渗试验时,随着土体的排水固结,土体各点的电势会发生明显的变化,这与现有的电渗固结理论假设土体各点电势保持不变有所差异。利用自主设计的电渗试验仪器开展了分级加载电压下的电渗室内试验,分析了电渗过程中土体有效电势变化的规律。基于该规律并结合Esrig固结理论建立了在阳极处不排水、阴极处排水条件下考虑土体有效电势变化的电渗固结理论,得到了分级加载电压条件下考虑土体有效电势变化的超静孔隙水压力和平均固结度的解析表达式。研究表明,在电压分级加载过程中,土体有效电势变化规律表现为随时间先基本保持不变,后呈抛物线状先增后减。通过试验案例验证了考虑土体有效电势变化所求得解析解的合理性,且该数值计算结果相较于Esrig数值计算结果,前者更加接近实测值,该固结方程的建立为后续分级加载电压技术的推广应用提供了理论依据,也为实际工程提供了参考。  相似文献   
72.
The layered lithium-rich manganese-based cathode material (Li1.2Mn0.54Co0.13Ni0.13) has the significant advantage of high specific capacity, but this material also suffers serious defects, including severe capacity attenuation and voltage attenuation during the cycle. At present, most researchers have been working to optimize the cycle performance of lithium-rich materials. In this work, we propose a surface homogenizing heterostructure coating induced by MXene modification to reduce capacity reduction and voltage decay. It can be found that the initial Coulombic efficiency (ICE) increases from 77.2% for the bare electrode Li1.2Mn0.54Co0.13Ni0.13 (LMO) to 85.5% for 1.4 wt% MXene (Ti3C2Tx, Tx represents the surface terminations: OH, O, F) modified lithium-rich (TO2). Furthermore, the discharge specific capacity of the electrode at 5 C rate increased from 160.7 mAh g−1 for LMO to 200.6 mAh g−1 for TO2. More prominently, the outstanding cycle stability with capacity retention rate is 82.1% for TO2 after 200 cycles, while only 64.7% for LMO, and the average discharge voltage dropped from 0.788 to 0.468 V. In addition, the mechanism for improving the electrochemical performance is systematically studied.  相似文献   
73.
Durability is one of the obstacles to the large-scale commercialization of proton exchange membrane fuel cell (PEMFC) stacks. Understanding its decay behavior is a prerequisite for improving durability. In this study, rapid degradation characteristics of an air-cooled PEMFC stack are investigated. Due to the simultaneous presence of various degradation sources, the maximum power of the PEMFC stack has been reduced by 39.6% after just 74.6 h of operations. Performance degradation characteristics are sought by analyzing the cell voltage, temperature distribution, ion chromatography, and surface morphology of the gas diffusion layer. The result shows that abnormal cell voltage and temperature distribution can reflect the problematic location. The fluoride ion emission rate is 0.111 mg/day, which proves that the membrane has been seriously degraded. Contact angle reduction and impurities attached to the surface of the gas diffusion layer lead to the water management failure. It is also found that the main factor for performance degradation could be different under different current conditions. And more information can be found under higher current conditions during monitoring the decay of PEMFCs. This study helps to deepen the understanding of performance degradation characteristics.  相似文献   
74.
Fluid flow manifold plays a significant role in the performance of a fuel cell stack because it affects the pressure drop, reactants distribution uniformity and flow losses, significantly. In this study, the flow distribution and the pressure drop in the gas channels including the inlet and outlet manifolds, with U- and Z-type arrangements, of a 10-cell PEM fuel cell stack are analyzed at anode and cathode sides and the effects of inlet reactant stoichiometry and manifold hydraulic diameter on the pressure drop are investigated. Furthermore, the effect of relative humidity of oxidants on the pressure drop of cathode are investigated. The results indicate that increase of the manifold hydraulic diameter leads to decrease of the pressure drop and a more uniform flow distribution at the cathode side when air is used as oxidant while utilization of humidified oxidant results in increase of pressure drop. It is demonstrated that for the inlet stoichiometry of 2 and U type manifold arrangement when the relative humidity increases from 25% to 75%, the pressure drop increases by 60.12% and 116.14% for oxygen and air, respectively. It is concluded that there is not a significant difference in pressure drop of U- and Z-type arrangements when oxygen is used as oxidant. When air is used as oxidant, the effect of manifold type arrangement is more significant than other cases, and increase of the stoichiometry ratio from 1.25 to 2.5 leads to increase of pressure drop by 527.3%.  相似文献   
75.
To operate a bag filter continuously, pulse-jet cleaning of dust particles from the filter medium is commonly required, and the pulse-jet pressure significantly affects the filter performance. In this study, the accumulation structure of residual dust particles inside and on the surface of a filter medium at different pulse-jet pressures was investigated by constructing a simple model, and the influence of the dust structure on the filter performance was clarified. Using a simple model, we determined the effective ratio of filtration area β, which represents the ratio of the filterable area to the total filtration area, the true resistance coefficient due to the primary dust layer ζp’ thinly deposited on the filter surface, and the true resistance coefficient inside the filter media itself ζf. The effective ratio of filtration area β decreased with operation time for all pulse-jet pressures; however, it maintained a high value when the pulse-jet pressure was high. The validity of β analyzed by the model was verified using two different methods, and the results showed good agreement, indicating that the model is effective in identifying real conditions. The true resistance coefficient due to the primary dust layer ζp’ decreased as the pulse-jet pressure increased; however, the true resistance coefficient inside the filter media itself ζf’ was the highest at 0.5 MPa. In addition, the dust collection efficiency was different at each pulse-jet pressure, which was considered to be caused by the difference in the dust particle accumulation structure.  相似文献   
76.
This paper proposes a method for the coordinated control of power factor by means of a multiagent approach. The proposed multiagent system consists of two types of agent: single feeder agent (F_AG) and bus agent (B_AG). In the proposed system, an F_AG plays as an important role, which decides the power factors of all distributed generators by executing the load flow calculations repeatedly. The voltage control strategies are implemented as the class definition of Java into the system. In order to verify the performance of the proposed method, it has been applied to a typical distribution model system. The simulation results show that the system is able to control very violent fluctuation of the demands and the photovoltaic (PV) generations.  相似文献   
77.
考察了2种进口渣油加氢催化剂(RM系列和ICR系列)在中化泉州石化有限公司330万t/a渣油加氢装置上的工业应用情况。结果表明:2种渣油加氢催化剂均具有良好的加氢活性;在原料性质和操作条件相近的条件下,与ICR系列催化剂相比,RM系列催化剂的脱硫、脱残炭性能较优,脱金属性能略差,且RM前部反应器床层压差上升速率较慢。  相似文献   
78.
This article deals with the evaluation of pressure drop and consumption of energy for a steady-state solvent extraction in a horizontal pulsed sieve-plate column, which are important for the design and optimization of the periodic-flow processes for industrial applications. In this study, the pressure drop and the position of loading points are investigated. Moreover, a mathematical evaluation on the energy consumption in the case of a pulsed flow is conducted, and besides the influence of pulsation intensity, the effect of geometrical parameters including the plate spacing and plate-free area is investigated as well. The results of this study are helpful for optimization of column geometry targeted to higher performance and lower energy consumption.  相似文献   
79.
This paper introduces a novel dynamic semiempirical model for the proton exchange membrane fuel cell (PEMFC). The proposed model not only considers the stack output voltage but also provides valid waveforms of component voltages, such as the no‐load, activation, ohmic, and concentration voltages of the PEMFC stack system. Experiments under no‐load, ramping load, and dynamic load conditions are performed to obtain various voltage components. According to experimental results, model parameters are optimised using the lightning search algorithm by providing valid theoretical ranges of parameters to the lightning search algorithm code. In addition, the correlation between the vapour and water pressures of the PEMFC is obtained to model the component voltages. Finally, all component voltages and the stack output voltage are validated by using the experimental/theoretical waveforms mentioned in previous research. The proposed model is also compared with a recently developed semiempirical model of PEMFC through particle swarm optimisation. The proposed dynamic model may be used in future in‐depth studies on PEMFC behaviour and in dynamic applications for health monitoring and fault diagnosis.  相似文献   
80.
In this paper,the flow field characteristics of a double-swirl low-emission combustor were analyzed by using Particle Imaging Velocimetry(PIV)technology in an optical three-sector combustor test rig.The interactions between sectors and the flow field structure were explained.The results illustrated that there was a big difference between the flow field structures of the middle sector and the side sector under the same pressure drop,which was mainly induced by the interactions between sectors.The interactions made the swirl intensity of the middle sector weaker than that of the side sector,which made the recirculation zone of the middle sector be smaller than that of the side sector.With the increase of swirler pressure drop,the jet velocity at the exit of the swirler,the jet expansion angle,the width of the recirculation zone and the recirculating speed of the central axis became larger,enhancing the interactions between air streams from middle sector and side sector.The flow velocity in the central plane between sectors was small,especially the radial velocity,mainly because of the loss of the swirl intensity by the interactions between flow field of adjacent sectors.The expansion angle determined the position of the vortex in the primary recirculation zone;the axial and radial position of the vortex move downstream and radial outward with the increase of the jet expansion angle.The results of the mechanism of flow field organization in this study can be used to support the design of new low-emission combustor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号